1、如图,平行四边形ABCD中,,点E为BC边中点,
,则AE的长为 ( )
A. 2cm B. 3cm C. 4cm D. 6cm
2、将抛物线y=﹣2(x﹣1)2﹣3向左平移3个单位,再向上平移2个单位,得到的抛物线是( )
A.y=﹣2(x﹣4)﹣1 B.y=﹣2(x+2)
﹣1
C.y=﹣2(x﹣4)﹣5 D.y=﹣2(x+2)
﹣5
3、勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,在中,
,以
的各边为边分别向外作正方形,再将较小的两个正方形按图2所示放置,连结
,
.若
,且
,则
的长为( )
A.
B.
C.
D.
4、如果y2-ay+81是一个完全平方式,那么a的值是( )
A. 18 B. -18 C. ±18 D. 以上选项都错
5、甲、乙两辆汽车同时分别从A、B两城驶向C城. 已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/小时,结果两辆车同时到达C城. 若设甲车的速度为千米/小时,则可列方程为( )
A. B.
C. D.
6、如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将
ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有( )
A.点M,点N
B.点M,点Q
C.点N,点P
D.点P,点Q
7、已知反比例函数的图像上有三点
,
,
,则
的大小关系为( )
A.
B.
C.
D.
8、使二次根式有意义的x的取值范围是( )
A.
B.
C.
D.
9、如图,在中,
,
,
,
为
的中点,连接
,以点
为圆心,
长为半径作弧
,若
于点
,
于点
.则图中阴影部分的周长为( )
A.
B.
C.
D.
10、如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:AB=( )
A. 2:5 B. 2:3 C. 3:5 D. 3:2
11、图,已知为等边三角形,D、E分别为
、
上一点,并满足
,连接
、
相交于F点,连接
,且
,过点B作
,与
相交于G点,现将
沿
翻折得到
,点I为
中点,且
,则点I到
的距离为______.
12、如图,圆锥底面半径为rcm,母线长为5cm,侧面展开图是圆心角等于216°的扇形,则该圆锥的底面半径为____
13、点关于y轴的对称点Q的坐标为________.
14、如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为_____m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
15、如图,矩形中,
,
,
为
边上的动点,当
_________时,
与
相似.
16、-27的立方根与16的算数平方根的和是______.
17、阅读理解:在数轴上点A所表示的实数为a,我们记xA=a,,点A、B、C分别表示的实数为﹣4,6,1,则记xA=﹣4,xB=6,xC=1,显然,A、C两点的距离为AC=xC﹣xA=1﹣(﹣4)=5,B、C两点的距离为CB=xB﹣xC=6﹣1=5,那么一般地,在数轴上点A、B表示的实数分别为a、b(点A在点B的左侧),则AB=xB﹣xA=b﹣a.
设点A、B的中点为C,则有AC=CB,由上可得xC﹣xA=xB﹣xC,即xC=
综合运用:如图,已知xA=﹣3,xB=4,若点B在点C的左侧,AC+BC=9.
(1)求xC,并在数轴上标出C点的位置;
(2)点M是AC的中点,点N是BC的中点,求xM,xN.
(3)若A、B两点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,AC的中点M和BC的中点N也随之运动,3秒后,MN=2,求点B的运动速度.
18、为响应国家扶贫攻坚的号召,A市先后向B市捐赠两批物资,甲车以的速度从A市匀速开往B市,甲车出发
后,乙车以
的速度从A市沿同一条道路匀速开往B市,甲、乙两车距离A市的路程
与甲车的行驶时间
之间的关系如图所示.
(1)两市相距__________
,m=__________,n=__________;
(2)求乙车行驶过程中y关于x的函数解析式,并写出x的取值范围;
(3)在乙车行驶过程中,当甲、乙两车之间的距离为时,直接写出x的值.
19、用适当的方法解下列方程
(1)2x2﹣5x=3
(2)x(x﹣5)=2(x﹣5)
20、如图,已知菱形的边长为
,
,对角线
、
相交于点
,试求这个菱形的两条对角线
与
的长.(结果保留根号)
21、已知关于x的方程.
(1)若方程总有两个不相等的实数根,求m的取值范围;
(2)若两实数根,
满足
,求m的值.
22、如图,在中,
,
,点
在
边上,
,过点
作
,交
的延长线于点
.
(1)求的度数;
(2)求证:.
23、a+(4a-3b)-(a- 2b);
24、已知等腰三角形ABC,如图.
(1)用直尺和圆规作△ABC的外接圆;
(2)设△ABC的外接圆的圆心为O,若∠BOC=128°,求∠BAC的度数.