1、一列简谐横波沿x轴正方向传播,从某时刻开始计时,在t=6s时的波形如图(a)所示。在x轴正向距离原点小于一个波长的A质点,其振动图像如图(b)所示。下列说法正确的是( )
A.A质点在t=3s与t=7s时刻速度方向相反
B.A点的平衡位置离原点的距离为x=0.25m
C.t=9s时,平衡位置在x=1.7m处的质点加速度方向沿y轴负方向
D.t=13.5s时,平衡位置在x=1.4m处的质点位移为正值
2、2022年6月18日,TP500无人运输机在湖北荆门完成首飞(如图)。该运输机可满足500kg级标准载重,最大航程1800km,是一款通用型大载重无人运输平台。某次试飞中,运输机水平匀加速直线通过测试空域,当到达地面测试人员的正上方时运输机速度大小为190m/s,经过一段时间,测试人员听到从正上方传来的运输机发动机声音,并且运输机在他前方与水平地面成60°的方向上,已知声速大约为340m/s,则此时运输机的速度大小最接近( )
A.200m/s
B.250m/s
C.300m/s
D.400m/s
3、将不带电的橡胶棒和毛皮摩擦后分开,它们产生的电场线分布如图所示。对于电场中的A、B两点,下列判断正确的是( )
A.B点的电势高
B.A点的电场强度大
C.正电荷在A点的电势能大
D.正电荷在A点受到的电场力大
4、如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接,已知导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为( )
A.2F
B.1.5F
C.0.5F
D.0
5、如图所示,水平放置足够长且光滑的金属导轨和de,ab与de平行并相距为L,bc是以O为圆心、半径为r的圆弧导轨,圆弧b左侧和扇形
内有方向如图所示的匀强磁场,磁感应强度均为B,a、d两端接有一个电容为C的电容器,金属杆OP的O端与e点用导线相接,P端与圆弧bc接触良好,初始时,可滑动的金属杆MN静止在平行导轨上,金属杆MN质量为m,金属杆MN和OP电阻均为R其余电阻不计,若杆OP绕O点在匀强磁场区域内以角速度ω从b到c匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )
A.杆OP产生的感应电动势恒为
B.电容器带电量恒为
C.杆MN中的电流逐渐减小
D.杆MN向左做匀加速直线运动,加速度大小为
6、如图所示,质量m=50kg的跳水运动员从距水面高h=10m的跳台上以v0=5m/s的速度斜向上起跳,最终落入水中。(若忽略运动员的身高,且取g=10m/s2)则运动员入水时的速度大小是( )
A.5 m/s
B.10m/s
C.20m/s
D.15m/s
7、某平行板电容器的电容为C,带电量为Q,相距为d,今在板间中点放一个电量为q的点电荷,则它受到的电场力的大小为( )
A.
B.
C.
D.
8、如图所示,质量为mB=2kg的重物B放在倾角为30°的固定光滑斜面上,通过细线跨过定滑轮连接重物A,,不计细线与滑轮间的摩擦。现由静止释放两重物,在A、B两重物运动过程中,细线的弹力可能为(g=10m/s2)( )
A.10N
B.20N
C.30N
D.40N
9、在2023年杭州亚运会女子跳水项目中,中国选手全红婵以438.20的总分勇夺金牌。某轮比赛中,选手从跳台跳下到入水速度减为0的过程经简化后可用如图所示的v-t图像进行描述,则( )
A.在0~t1时间内,平均速度为0
B.在t0~t1时间内,平均速度
C.t1时刻,选手处于超重状态
D.在0~t0时间内加速度不变,在t0~t1时间内加速度增大
10、如图所示为某实验小组利用频闪照相的方法得到的竖直方向上振动的弹簧振子的频闪照片,频闪仪每隔0.05秒闪光一次,闪光瞬间小球被照亮,从而得到闪光时小球的位置。拍摄时底片从右向左匀速运动,若图中照片的总长度为。则( )
A.表示时间的坐标轴的方向向左
B.弹簧振子的振动周期约为
C.底片移动的速度大小约为
D.图中处在A点的小球正在向下运动
11、如图所示,一物体受到两个力作用,其中,
,
与x轴正方向夹角分别为45°,
沿y轴负方向,则这两个力的合力大小与方向分别为( )
A.20N 方向沿x轴正方向
B.20N 方向沿y轴正方向
C. 方向与x轴正方向夹角为45°
D. 方向与x轴负方向夹角为45°
12、如图,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,∠MOP=60°,两个带等量异号电荷的点电荷分别置于M、N两点,这时O点电场强度的大小为;若将N点处的点电荷移至P点,则O点的电场强度大小变为
,则
与
之比为( )
A.
B.
C.
D.
13、某一公交车进站时制动后做匀减速直线运动,则从公交车刹停前的3s开始计时,第1s内、第2s内、第3s内通过的位移之比为( )
A.1:3:5
B.1:2:3
C.5:3:1
D.9:4:1
14、下列说法正确的是( )
A.物体不受外力作用时,一定处于静止状态
B.速度越大的物体具有的惯性越大
C.瞬时速度的定义利用了极限的思想
D.“探究加速度与力、质量的关系”实验中使用的物理实验方法是等效替代法
15、装有一定量细沙的两端封闭的玻璃管竖直漂浮在水中,水面范围足够大,如图甲所示。把玻璃管向下缓慢按压后放手,忽略水的粘滞阻力,玻璃管的运动可以视为竖直方向的简谐运动,测得振动周期为
。以竖直向上为正方向,从某时刻开始计时,其振动图像如图乙所示,其中A为振幅。对于玻璃管,下列说法正确的是( )
A.振动过程中玻璃管的回复力仅由浮力提供
B.时刻,加速度方向与位移方向相同
C.在时间内,玻璃管位移减小,加速度减小,速度增大
D.振动频率与按压的深度有关
16、如图所示的电路称为“电荷泵”电路。D为二极管,具有单向导电性。C为电容器,L为电感线圈。电源的电动势为E。开关S每闭合、断开一次,电容器C两端电压即提升一次。使开关S多次闭合、断开,在电容器C两端可以获得远远超出E的高压。关于此电路,以下说法正确的是( )
A.开关S断开后,电感线圈中有往复的交变电流
B.开关S断开后,电感线圈两端的电压始终等于电容器两端的电压
C.电容器C的上极板不断积累负电荷,下极板不断积累正电荷
D.电感线圈匝数越多,电容器两端最终能够获得的电压值越大
17、下列防雷措施可行的是( )
①在大树下避雷雨;②停留在山顶、山脊的凉亭等地方避雷雨;③不要快速开摩托车、骑自行车或在雨中狂奔;④在空旷地带,最好关掉手机电源
A.①③
B.②③
C.①④
D.③④
18、如图所示,边长为L的等边三角形ABC内有垂直于纸面向里、磁感应强度大小为的匀强磁场,D是AB边的中点,一质量为m、电荷量为
的带电的粒子从D点以速度v平行于BC边方向射入磁场,不考虑带电粒子受到的重力,则下列说法正确的是( )
A.粒子可能从B点射出
B.若粒子垂直于BC边射出,则粒子做匀速圆周运动的半径为
C.若粒子从C点射出,则粒子在磁场中运动的时间为
D.若粒子从AB边射出,则粒子的速度越大,其在磁场中运动的时间越短
19、下列有关物理知识和史实的说法,正确的是( )
A.伽利略发现了万有引力定律
B.卡文迪什在实验室里通过几个铅球之间万有引力的测量,得出了引力常量的数值
C.地球同步卫星的发射速度应介于与
之间
D.哥白尼发现了行星运动的三大规律,为人们解决行星运动学问题提供了依据
20、带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹。如图所示,在垂直纸面向里的匀强磁场中观察到某带电粒子的轨迹,其中a和b是运动轨迹上的两点。该粒子使云室中的气体电离时,其本身的动能在减少,而其质量和电荷量不变,重力忽略不计。下列说法正确的是( )
A.粒子带正电
B.粒子先经过a点,再经过b点
C.粒子运动过程中洛仑兹力对其做负功
D.粒子运动过程中所受洛伦兹力逐渐减小
21、如图为一皮带传动装置,大轮C与小轮A固定在同一根轴上,小轮与另一个中等大小的轮子B间用皮带相连,它们的半径之比是1:2:3。A、B、C分别为轮子边缘上的三个点。
(1)三点线速度之比__________。
(2)三点角速度之比__________。
(3)三点向心加速度之比__________。
22、如图所示是有两个量程的电流表,当使用A、B两个接线柱时,量程为0~3A,当使用A、C两个接线柱时,量程为0~0.6A。已知表头的内阻Rg为30,满偏电流Ig为1mA,则电阻R1=___________
,R2=___________
。(结果保留两位小数)
23、如图所示,在磁感应强度为B的足够宽的匀强磁场中,有一个边长为L的正方形线框,线框平面与磁场垂直,则此时穿过线框的磁通量为______.若线框向右平移,线框中有无感应电流?______.若将线框翻转180°,该过程磁通量的变化量为______.该过程有无感应电流?______.若将线框绕其中一边向外转90°,则此时的磁通量变化为______.该过程中有无感应电流?______.
24、如图所示,Q为固定的正点电荷,A、B两点在Q的正上方与Q相距分别为h和0.25h,将另一点电荷(重力不可忽略)从A点由静止释放,运动到B点时速度正好又变为零.若此电荷在A点处的加速度大小为g,此电荷在B点处的加速度大小为______;方向________;A、B两点间的电势差(用Q和h表示)UAB=______.
25、判断下列说法的正误。
(1)衍射条纹和干涉条纹都是明暗相间的,所以二者是一样的。(____)
(2)只有波长长的光才发生衍射现象。(____)
(3)横波和纵波都能产生偏振现象。(____)
(4)自然光通过偏振片可以获得偏振光。(____)
(5)用激光做双缝干涉实验是应用了激光具有高度的相干性的特点。(____)
(6)利用激光的平行度好的特点,可以利用激光进行距离测量。(____)
26、重核裂变时放出的________引起其他重核的裂变,可以使裂变________,这就是链式反应.为了使链式反应容易发生,最好是利用________.
27、某实验小组用如图所示的装来验证系统的动能定理,当地的重力加速度为g,主要实验步骤如下:
A.用天平测量滑块与遮光条的总质量M以及钩码的质量m,调节气垫导轨成水平状态;
B.将带有遮光条的滑块放在气垫导轨上,用跨过光滑定滑轮的细线拴接滑块和钩码,调节细线;
C.将滑块由气垫导轨的左侧某个位置由静止释放,通过刻度尺读出释放点与光电门之间的距离L以及遮光条通过光电门的挡光时间;
D.重复上述实验步骤得出多组实验数据.
(1)下列说法正确的是________(填标号);
A.实验过程中,钩码的重力做的功等于绳对滑块的拉力做的功
B.需要调节细线与气垫导轨成平行状态
C.为了完成该实验,还需要测量挡光片从释放点到光电门处的运动时间
(2)若测得挡光条的宽度为d,则滑块经过光电门的瞬间速度为________;
(3)以为纵轴、以
为横轴,当绘出的函数图像的斜率
________,就能验证系统的动能定理。
28、如图,为磁悬浮列车的原理图,水平地面上有两根很长的平行直导轨PQ和MN,导轨间有竖直(垂直纸面)方向等间距的匀强磁场B1和B2,二者方向相反。导轨上有一个与磁场间距等宽的金属框abcd。当匀强磁场B1和B2同时以某一速度沿直轨道向右运动时,金属框也会沿直轨道运动,设金属框ab边长L=2m,匀强磁场的磁感应强度为B1=B2=5T,金属框的质量m=1kg,电阻为R=2Ω,设金属框受到的机械阻力总和(即空气阻力等)与其速度成正比,即f=kv、比例系数k=5N·s/m。(提示:若磁场与金属棒速度相等,则无动生电动势)
(1)若磁场运动速度为v0=5m/s,设在t=0时刻,金属框从如图位置启动,求此时金属框运动的加速度的大小;
(2)若磁场的运动速度稳定为v0=5m/s,求金属框的最大速度v1的大小;
(3)请定性分析当金属框以最大速度匀速运动时,该模型内的能量转化情况;
(4)请猜测实际在运行的磁悬浮列车的启动加速度与(1)中结果的大小关系,并分析两者区别的主要原因。
29、质量为m、电荷量为的带电粒子(不计重力),从静止开始经加速电场加速后,进入半径为R的绝缘圆形筒内,M、N两极板间电压为U,圆简中有方向垂直纸面向外的匀强磁场,如图所示,若要求带电粒子进入磁场后,经过与圆筒壁做数次碰撞后,又从原入口处飞出.设在碰撞过程中带电粒子的电荷量保持不变,且每次与筒壁碰撞都没有机械能损失.求下列情况下磁感应强度B的大小:
(1)与圆筒碰撞3次;
(2)与圆筒碰撞4次;
(3)与圆筒碰撞n次(其中n=3,4,5,…).
30、一列简谐波横波沿x轴传播,如图所示的实线和虚线分别为和
两个时刻的波的图像,已知波速为
。求:
(1)这列波的频率;
(2)时间间隔可能的值。
31、如图1所示,三角形单匝金属线框内有垂直于线框平面向外的匀强磁场,线框中磁通量随时间变化规律如图2所示,金属线框与阻值为的定值电阻R连接,电压表为理想电表
,连接电路的导线电阻不计,求:
(1)电路中的感应电动势大小;
(2)金属线框的电阻大小。
32、如图所示QB段为一半径为的光滑圆弧轨道,AQ段为一长度为
的粗糙水平轨道,两轨道相切于Q点,Q在圆心O的正下方,整个轨道位于同一竖直平面内。物块P的质量为
(可视为质点)P与AQ间的动摩擦因数
,若物块P以速度v从A点滑上水平轨道,到C点后又返回A点时恰好静止,(
)。求:
(1)的大小;
(2)物块P第一次刚通过Q点时对圆弧轨道的压力。