2025秋初一(上)课时练习数学考卷

一、选择题(共12题,共 60分)

1、x为一个有理数,若,则x必定是(       

A.负数

B.正数

C.非负数

D.零

2、如图,中,的平分线交于点,过点于点,交于点,那么下列结论,其中正确的有(       

是等腰三角形;②;③若,则;④

A.1个

B.2个

C.3个

D.4个

3、如图, ,且平分,以下等式不成立的是(       

A.

B.

C.

D.

4、已知二元一次方程2x﹣7y=5,用含x的代数式表示y,正确的是(  )

A.   B.   C.   D.

 

5、下列长度的3根小木棍,能搭成三角形的是(       

A.4cm,6cm,8cm

B.5cm,9cm,3cm

C.3cm,4cm,7cm

D.2cm,7cm,4cm

6、下列有关圆柱、圆锥相同点与不同点的描述错误的是(  )

A.围成圆柱、圆锥的面中都有曲面 B.两者都有一个面是圆形的

C.两者都有顶点 D.圆柱比圆锥多一个面

7、下列运算正确的是(  )

A.a2+a2a4

B.a3a2a9

C.a32a5

D.3ab29a2b2

8、已知是关于的方程的根,则的值为(   ).

A.   B.   C.   D.

9、如果|a+3|+(b﹣2)2=0,那么代数式(ab2021的值是(       

A.﹣2021

B.2021

C.﹣1

D.1

10、已知正方体的体积为64,则这个正方体的棱长为(        

A.4

B.8

C.

D.

11、下列运算正确的是(  )

A. 3m2﹣2m2=1    B. 5m4﹣2m3=3m    C. m2n﹣mn2=0    D. 3m﹣2m=m

12、渥太华与北京的时差为﹣13时(正数表示同一时刻比北京早的时数),如果北京时间为12251000,那么渥太华时间为(  )

A.122523 B.122521

C.122421 D.12249

二、填空题(共8题,共 40分)

13、若3x4ym与﹣2xn+1y3是同类项,则m+n_____

14、如图,已知点D为线段AC的中点,点B为线段DC的中点,DB=2,则线段AC=  

 

 

15、命题垂线段最短_____(填真命题假命题”)

16、化简:______

17、多项式 中,不含项,则的值为____________

18、比较大小:﹣4 _____﹣1(选填“<”、“=”、“>”).

19、计算:_________

20、已知,且,则代数式的值为__________

三、解答题(共6题,共 30分)

21、对于方程,某同学解法如下:

解:方程两边同乘,得

去括号,得

合并同类项,得

解得:

原方程的解为  

1)上述解答过程中从第_________(填序号)开始出现错误.

2)请写出正确的解答过程.

22、定义一种新运算.观察下列各式:

1)计算:  

2)若,求的值;

3)化简:,若化简后代数式的值与的取值无关,求的值.

23、操作与探究

对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点

如图1,点AB在数轴上,对线段AB上的每个点进行上述操作后得到线段,其中点AB的对应点分别为

(1)若点A表示的数是﹣3,点表示的数是   

(2)若点表示的数是2,点B表示的数是   

(3)已知线段AB上的点E经过上述操作后得到的对应点与点E重合,则点E表示的数是   

(4)保持前两问的条件不变,点C是线段AB上的一个动点,以点C为折点,将数轴向左对折,点B的对应点落在数轴上的处,若,求点C表示的数.

24、解不等式组,并把解集在数轴上表示出来.

25、李老师布置了一道数学题“当时,求代数式的值”,小亮略加思考后指出:题中给出的条件m=2021,n=-2021是多余的,请问小亮说的有道理吗?请说明理由.

26、阅读(1)解题过程,解(2)小题:

1)解方程:|3x|=5

解:当3x≥0时,即x≥0,原方程可化为一元一次方程3x=5,解得x=;当3x0时,即x≤0,原方程可化为一元一次方程-3x=5,解得x=

所以原方程的解为:x=x=

2)解方程:4|1-x|+3=13

首页
栏目
栏目
栏目
栏目
查看答案
下载试卷