1、如图为某种电场的一条电场线,线上有a、b两点,下列说法正确的是( )
A.如果电场为匀强电场,则场强Ea > Eb
B.如果电场是正点电荷场源产生的,则场强Ea >Eb
C.如果电场是负点电荷场源产生的,则电势φa < φb
D.如果把一个电量+q的试探电荷置于a、b两点,则电势能EPa < EPb
2、如图所示,长度为的导体棒
与导电线框垂直,水平放置在磁感应强度为
的竖直向上的匀强磁场中。已知流过导体棒电流方向由
到
,电流大小为
,导体棒始终处于静止,则( )
A.导体棒所受安培力方向水平向左
B.导体棒所受安培力方向竖直向上
C.导体棒所受安培力大小为
D.导体棒所受安培力大小0
3、校运动会上小明参加400m的比赛,他从起点逆时针开始跑,测得他在第2s内跑了8m,前10s跑了90m,最后80m在直道上冲刺,跑完全程一共用了50s,则下列说法正确的是( )
A.小明在第2s末的瞬时速度为8m/s
B.小明跑完全程的平均速度为8m/s
C.小明在前10s内的平均速度大小是9m/s
D.小明全程的平均速率与第2s内的平均速率相等
4、人从超过的高度落下,容易造成骨折,因为落地时胫骨受到的支持力将数倍于自身重力,这一现象是( )
A.超重
B.失重
C.既不超重也不失重
D.超重失重均有可能
5、某物体在水平面内沿曲线减速行驶。关于该物体的速度v及所受合力F的方向,最可能如下列哪幅图所示( )
A.
B.
C.
D.
6、如图,汉墓壁画拓片描绘了汉代人驾车的场景。当马拉车沿水平路面前进时,下列说法正确的是( )
A.车夫对马的拉力不做功
B.车夫对马的拉力做正功
C.马对车的拉力做正功
D.马对车的拉力做负功
7、甲、乙两物体从同一点出发且在同一条直线上运动,它们的位移—时间()图像如图所示,下列说法正确的是( )
A.甲物体第1s末的加速度大于第4s末的加速度
B.0~3s内甲的平均速度小于乙的平均速度
C.第4s末甲、乙两物体相遇
D.0~6s内甲的速度方向未发生改变
8、学习是一个不断探究、积累和总结的过程。科学的研究也是如此,在学习过程中我们也总结出一些科学研究方法,下面关于这些研究方法表述正确的是( )
A.质点是一种理想化模型,它把物体看作一个有质量却没有体积的点,能否把物体看作质点取决于物体的形状和大小
B.是平均速度公式,当
取得很短时,其值可以用来作为该时刻的瞬时速度,这在物理学上应用了等效替代方法
C.这里用两个物理量(
和
)之比定义了一个新的物理量(a),这在物理学上叫比值定义法,这个式子说明加速度a与速度变化量
成正比
D.图像可以描述质点的运动,图像可以反映速度随时间的变化规律,图像的斜率反映加速度的大小和方向
9、特高压直流输电是国家重点能源工程。如图所示,两条平行导线、
,其中a、b点连线与两导线垂直,O点为连线中点,导线长度看作无限长、忽略地磁场,两根导线通有同向的电流,大小分别为
、
,则( )
A.与
相互排斥
B.O点的磁感应强度方向与电流方向相同
C.若,则O点处的磁感应强度大小为零
D.若,则两导线所受安培力大小不相等
10、如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻。质量为m、长度为L、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中。磁感应强度为B。开始时,电容器所带的电荷量为Q,合上开关S后,( )
A.流经导体棒MN的电流的最大值为
B.导体棒MN向右先加速、后匀速运动
C.导体棒MN速度最大时所受的安培力也最大
D.电阻R上产生的焦耳热等于导体棒MN上产生的焦耳热
11、人站在力传感器上,计算机采集的图线呈现的是力传感器的示数随时间变化的情况。若观察到计算机采集的力传感器的示数随时间变化的情况如图所示,g取。下列说法正确的是( )
A.人的质量为500kg
B.从a到b人的重力减小了
C.从a到b人处于失重状态
D.从b到c人处于失重状态
12、如图所示,四盏相同的灯泡并联接在电池组两端,闭合S1后,灯泡L1正常发光。依次闭合S2、S3、S4,灯泡L2、L3、L4也依次亮起来,在此过程中电流表A1和A2示数的变化情况是( )
A.A1和A2的示数都逐渐增大
B.A1和A2的示数都逐渐减小
C.A1的示数逐渐增大,A2的示数逐渐减小
D.A1的示数逐渐减小,A2的示数逐渐增大
13、下列关于教材中四幅插图的说法正确的是( )
A.甲图中当摇动手柄使得蹄形磁铁转动,则铝框会同向转动,且和磁铁转得一样快
B.乙图中探测地雷的探测器通过长柄线圈中的电流是变化电流
C.丙图是通过电磁炉生成的电磁波对食物加热
D.丁图中磁电式仪表,把线圈绕在铝框骨架上,目的是起到电磁驱动的作用
14、某一公交车进站时制动后做匀减速直线运动,则从公交车刹停前的3s开始计时,第1s内、第2s内、第3s内通过的位移之比为( )
A.1:3:5
B.1:2:3
C.5:3:1
D.9:4:1
15、下列关于在粗糙斜面上自由下滑物体的受力分析示意图中,正确的是( )
A.
B.
C.
D.
16、十九世纪末发现电子以后,物理学家密立根通过实验比较准确地测定了电子的电荷量。如图所示为密立根实验的示意图,两块金属板水平放置,板间存在匀强电场,方向竖直向下。用一个喷雾器把许多油滴从上极板中间的小孔喷入电场,油滴由于摩擦而带电,当一些微小的带电油滴受到的电场力和重力恰好平衡时,油滴处于悬浮状态。当极板间的电压为U、距离为d时,一质量为m的油滴恰好悬浮于电场中,重力加速度为g,则该油滴( )
A.带负电,电荷量为
B.带正电,电荷量为
C.带负电,电荷量为
D.带正电,电荷量为
17、如图所示,一绝缘轻质细绳悬挂一质量为m、电量为q的带电小球静止于水平向左足够大的匀强电场中,已知电场强度大小
。现使匀强电场保持场强大小不变,方向在纸面内缓慢逆时针转动30°,则在该过程中(已知重力加速度为g,轻绳与竖直方向的夹角设为θ)( )
A.θ先增大后减小
B.θ最小值为30°
C.电场力不做功
D.轻绳拉力最小值为
18、摄制组在某大楼旁边拍摄武打片,要求特技演员从地面飞到屋顶。如图所示,导演在某房顶离地H处架设了滑轮(人和车均视为质点),若轨道车沿轨道水平向左运动,由于绕在滑轮上细钢丝的拉动,使特技演员向上运动。若想保证特技演员在中间一段距离内匀速上升,则在这段距离对应的时间内( )
A.轨道车水平向左匀速直线运动
B.轨道车水平向左加速直线运动
C.轨道车水平向左减速直线运动
D.轨道车水平向左匀减速直线运动
19、如图,轻质细杆上穿有一个质量为
的小球
,将杆水平置于相互垂直的固定光滑斜面上,系统恰好处于平衡状态。已知左侧斜面与水平面成
角,则左侧斜面对杆
支持力的大小为( )
A.
B.
C.
D.
20、一定量的理想气体从状态a变化到状态b,该气体的热力学温度T与压强p的变化关系如T-p图中从a到b的线段所示。在此过程中( )
A.外界一直对气体做正功
B.气体体积一直减小
C.气体一直对外界放热
D.气体放出的热量等于外界对其做的功
21、一个原子核经过一次衰变和一次
衰变后:成为一个新原子核,则它与原来的核相比,质量数减少了________,电荷数减少了________.
22、两个做平抛运动的物体的初速度之比为2:1,若它们的水平位移相等,则它们的抛出点离地面的高度之比为___________。
23、如图,长为 L 的细线拴一个质量为 m 的小球悬挂于 O 点,重力加速度为 g,现将小球拉至与 O 点等高的位置使细线呈水平状态,从释放小球到细线和小球摆至竖直位置的过程中,重力对小球做的功为__________,细线的拉力对小球做的功为__________。
24、向心力是根据力的______命名的,它是由______提供。
25、丹麦物理学家奥斯特发现了电流会产生磁场;英国物理学家_______发现了磁场可以产生电流,而从理论上确定电和磁本质关系的是英国物理学家_______。(两空均选填“库仑”、“法拉第”、“韦伯”或“麦克斯韦”)
26、2020年11月24日,嫦娥五号发射升空,成为我国首个从月球采样返回的航天器。已知月球质量为7.4×1022kg,月球半径为1.7×103km,引力常量为6.67×10-11N·m2/kg2,该探测器从月球起飞的第一宇宙速度为___________,第二宇宙速度为___________。(结果保留两位有效数字)。
27、用如图所示的电路图测量两节干电池的电动势E和内阻r。在下列实验器材中选出适当的实验器材进行实验。
A.电压表(V)(量程0~3V,内阻约为3kΩ);
B.电流表()(量程0~0.6A,内阻约为0.125Ω);
C.电流表()(量程0~3A,内阻约为0.025Ω);
D.定值电阻;
E.滑动变阻器R(阻值约为15Ω);
F.电源E(二节干电池,电动势约为3.0V);
G.开关S一个,导线若干。则:
(1)实验中为了提高精度,电流表应选用________(选填器材代号)。
(2)选择适当的器材连接好实验电路后,闭合开关S,通过调节滑动变阻器R的阻值使电流表示数逐渐接近满偏,记录此过程中电压表和电流表的示数,结果发现电压表示数的变化范围较小,出现该现象的主要原因是_______。
①结合提供的实验器材,将电路进行改进,请在虚线框中画出改进后的电路图(其中,部分电路已画出)。__________
②根据改进后实验中记录的电流表的示数I和电压表的示数U,得到了如图所示的U-I图像,根据图像可知,电源的电动势E=___________V,内阻r=___________Ω(结果均保留2位小数)。
28、如图所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。导轨顶端连接一个阻值为1 Ω的电阻。在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的图象如图所示。金属棒运动过程中与导轨保持垂直且接触良好,金属棒与导轨间的动摩擦因数为0.25,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。求:
(1)求金属棒在磁场中能够达到的最大速率;
(2)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。
29、如图所示,在同一个竖直平面内的A、B两处距离地面高度分别为H和2H,将两个可视为质点的小球以相同大小的初速度分别从A、B两处水平向右和竖直向下抛出,不计阻力,重力加速度为g。求:
(1)A球从抛出到落地所需要的时间为多大;
(2)若在A处抛出的球落地前,两小球能够在空中相遇,其初始位置间的水平距离s为多大;初速度应该满足什么条件。
30、有两列简谐横波a、b在同一介质中沿x轴正方向传播,波速均为v=2.5m/s。在t=0时,两列波的波峰正好在x=2.5m处重合,如图所示。求
(1)求两列波的周期Ta和Tb。
(2)求t=0时,两列波的波峰重合处的所有位置。
31、如图,半径为R的光滑半圆形轨道固定在竖直平面内,与粗糙水平轨道
相切于C点,直径
竖直。D端有一被压缩的轻质弹簧保持锁定,弹簧左端连接在固定的挡板上,弹簧右端P到C点的距离为
。质量为m的小滑块从轨道上的B点由静止滑下,恰好能运动到P点。此时弹簧解除锁定,之后滑块被弹回,且刚好能通过圆轨道的最高点A。已知
,重力加速度为g。求:
(1)滑块第一次滑至圆轨道最低点C时的速度大小;
(2)滑块第一次滑至圆轨道最低点C时对圆轨道的压力;
(3)滑块与水平轨道间的动摩擦因数;
(4)弹簧被锁定时具有的弹性势能。
32、如图甲所示,光滑水平面上有A、B、C三个物体,其中物体C处于静止状态,其左端与轻质弹簧连接,已知物体B、C质量分别为mB=2kg、mC=6kg,以水平向右为正方向,在接触弹簧之前,物体A、B的位置x随时间t变化关系如图乙所示,求:
(1)物体A的质量mA;
(2)物体A、B碰撞过程中损失的机械能;
(3)运动过程中,弹簧具有的最大弹性势能.(整个过程弹簧总在弹性限度范围内)