湘潭2024-2025学年第二学期期末教学质量检测试题(卷)初三数学

一、选择题(共10题,共 50分)

1、如图,的直径,上两点, ,则等于(       

A.

B.

C.

D.

2、下列说法正确的是( )

A.

B.如果都是单位向量,那么

C.如果,那么

D.为非零向量),那么

3、sin 30°的值为(  )

A. B. C. D.

4、方程x2-2x-3=0经过配方法化为(x+a)2=b的形式,正确的是(   )

A.   B.

C.   D.

 

5、如图,正方形的面积为12,点E在边上,且,连接沿折叠,点A对应点为F,延长于点G,点MN分别是的中点,则的长为(       

A.

B.

C.

D.

6、如图,把一个量角器与一块30°()角的三角板拼在一起,三角板的斜边与量角器所在圆的直径重合,现有点恰好是量角器的半圆弧中点,连结.若,则的长为(  

A. B. C. D.

7、P35)关于直线yx对称的点为点P1,关于直线y=-x对称的点为点P2,则点P1P2的坐标分别为(  )

A.(3,5),(5,3) B.(5,3),(-5,-3) C.(5,3),(3,5) D.(-5,-3),(5,3)

8、如图,正方形的对角线交于点O.点E上,且, 连接于点F,若,则正方形的边长为( )

A.7

B.

C.6

D.8

9、如图,平分于点P,点Q上,,则的面积为(       

A.

B.6

C.9

D.18

10、下列说法中,不正确的是(  )

A.与圆只有一个交点的直线是圆的切线

B.经过半径的外端,且垂直于这条半径的直线是圆的切线

C.与圆心的距离等于这个圆的半径的直线是圆的切线

D.垂直于半径的直线是圆的切线

二、填空题(共6题,共 30分)

11、点(﹣3,﹣1)关于原点对称的点的坐标是_____

12、若抛物线yx2+2x+cx轴没有交点,写出一个满足条件的c的值:_____

13、已知的半径,圆心O到直线的距离d是方程的解,则直线的位置关系是_________

14、“学中共党史,庆建党百年”,截至4月26日,某市党员群众参与答题次数达8420000次,掀起了党史学习竞赛的热潮,数据“8420000”用科学记数法可表示为___

15、若一条抛物线与的形状相同且开口向下,顶点坐标为,则这条抛物线的解析式为______

16、如图,矩形的顶点在反比例函数的图象上,若点的坐标为轴,则点的坐标为__________

 

三、解答题(共8题,共 40分)

17、解方程:

18、对于给定的两个函数,任取自变量x的一个值,当x1时,它们对应的函数值互为相反数:当x1时,它们对应的函数值相等,我们称这样的两个函数互为相关函数,例如:一次函数yx4,它的相关函数为

1)一次函数y=﹣x+5的相关函数为   

2)已知点Ab14),点B坐标(b+34),函数y3x2的相关函数与线段AB有且只有一个交点,求b的取值范围;

3)当b+1xb+2时,函数y=﹣3x+b2的相关函数的最小值为﹣3,求b的值.

19、如图,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为18m),另外三边利用学,校现有总长38m的铁栏围成.

1)若围成的面积为,试求出自行车车棚的长和宽;

2)能围成面积为的自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.

20、二次函数y=x2+(2m+1)x + m2﹣1与x轴交于A,B两个不同的点.

(1)求:m的取值范围;

(2)写出一个满足条件的m的值,并求此时A,B两点的坐标.

21、1)在直角坐标系中画出二次函数yx2x的图象.

2)若将yx2x图象沿x轴向左平移2个单位,请写出平移后图象所对应的函数关系式.

3)根据图象,写出当y0时,x的取值范围.

22、如图,在菱形ABCD中,对角线ACBD相交于点O

(1)过点D作直线DEBCE(要求:尺规作图,井保留作图痕迹,不写做法);

(2)在(1)的条件下,连接OE,若∠ABC=140°,求∠OED的度数.

23、如图,点从点方向运动,点方向运动,点同时出发,点时,停止运动.点关于直线的对称点,延长,延长,记,已知,当时,

1)当时,证明:

2)当为直角三角形时,求所有满足条件的的值.

3)连接,当

①求的长.

②直接写出的值.

24、如图,在某场足球比赛中,球员甲从球门底部中心点的正前方处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为时达到最高点,此时足球飞行的水平距离为.已知球门的横梁高

在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)

守门员乙站在距离球门处,他跳起时手的最大摸高为,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?

首页
栏目
栏目
栏目
栏目
查看答案
下载试卷