1、我们定义一种变换S:对于一个由5个数组成的数列S1,将其中的每个数换成该数在S1中出现的次数,可得到一个新数列S2.例如:当数列S1是 (4,2,3,4,2)时,经过变换S可得到的新数列S2是(2,2,1,2,2).若数列S1可以由任意5个数组成,则下列的数列可作为S2的是( )
A. (1,2,1,1,2) B. (2,2,2,3,3) C. (1,1,2,2,3) D. (1,2,1,2,2)
2、《九章算术》中“盈不足术”有这样的问题:“今有共买羊,人出六,不足四十五;人出八,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出元,则差
元;每人出
元,则差
元.求人数和羊价各是多少?设买羊人数为
人,则根据题意可列方程为( )
A.
B.
C.
D.
3、正比例函数y=2x的图象向左平移1个单位后所得函数解析式为( )
A.y=2x+1
B.y=2x﹣1
C.y=2x+2
D.y=2x﹣2
4、不等式组的整数解的个数是( ).
A.0个
B.2个
C.4个
D.5个
5、下列函数中,不是二次函数的是( )
A.y=x(x-1)
B.
C.
D.
6、下列各式计算正确的是( )
A.a•a
=a
B.(a
)
=a
C.a
+3a
=4a
D.a
÷a
=a
7、下列四个数中,是负数的是( )
A.
B.
C.
D.
8、已知、
是关于
的一元二次方程
的两个根,且满足
,
,则
的取值范围是( )
A.
B.
C.
D.
9、下列说法中,正确的是( )
A.过圆心的线段叫直径
B.长度相等的两条弧是等弧
C.与半径垂直的直线是圆的切线
D.圆既是中心对称图形,又是轴对称图形
10、若抛物线y=x2-6x+c-2的顶点到x轴的距离是3,则c的值等于( )
A. 8;或14 B. 14; C. -8 D. -8或-14
11、在平面直角坐标系中,已知点A(﹣,0),B(
,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标_____.
12、抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2=_____.
13、已知△ABC的外心为O,内心为I,∠BOC=120°,∠BIC=_______
14、甲、乙两位同学参加跳远训练,在相同条件下各跳了次,它们成绩的平均数满足
,方差
,则成绩较稳定的同学是__________(填“甲”或“乙”).
15、因式分解:x3-9x= .
16、如图,菱形的边长为15,
,则
_________.
17、为了了解某市九年级学生的体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)统计,得到统计图、表如图.
分数段 | A | B | C | D | E | 合计 |
频数/人 | 12 | 36 | 84 | b | 48 | c |
频率 | 0.05 | a | 0.35 | 0.25 | 0.20 | 1 |
根据上面的信息,回答下列问题:
(1)统计表中,a= ,b= ,c= ;将频数分布直方图补充完整.
(2)小明说:“这组数据的众数一定在C中.”你认为小明的说法正确吗? (选填“正确”或“错误”).
(3)若成绩在27分及以上定为优秀,则该市30000名九年级学生中体育成绩为优秀的学生人数约有多少?
18、抛物线与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线
经过B、C两点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.,垂足为N.设
.
①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请求出符合条件的m的值;
②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使.若存在,求出点P的坐标;若不存在,请说明理由.
19、经过建设者三年多艰苦努力地施工,贯通我市A、B两地又一条高速公路全线通车。已知原来A地到B地普通公路长150km,高速公路路程缩短了30km,如果一辆小车从A地到B地走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟。求小车走普通公路的平均速度是多少?
20、如图,正方形ABCD的边长为1,点E为边AB上一动点,连结CE并将其绕点C顺时针旋转90°得到CF,连结DF,以CE、CF为邻边作矩形CFGE,GE与AD、AC分别交于点H、M,GF交CD延长线于点N.
(1)证明:点A、D、F在同一条直线上;
(2)随着点E的移动,线段DH是否有最小值?若有,求出最小值;若没有,请说明理由;
(3)连结EF、MN,当MN∥EF时,求AE的长.
21、随着信息技术的迅猛发展,人们购物的支付方式更加多样、便捷,为调查大学生购物支付方式,某大学一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为
(2)将条形统计图补充完整;
(3)若该大学有10000名学生,请你估计购物选择用支付宝支付方式的学生约有多少人?
22、如图,抛物线y=ax2+bx﹣经过点A(﹣2,
),与x轴相交于B,C两点,且B点坐标为(﹣1,0).
(1)求抛物线的函数表达式;
(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC′D,若点C′恰好落在抛物线的对称轴上,求点C′和点D的坐标;
(3)抛物线与y轴交于点Q,连接BQ,DQ,在抛物线上有一个动点P,且S△PBD=S△BDQ,求满足条件的点P的横坐标.
23、如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.
(1)求抛物线的函数解析式;
(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;
(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
24、如图每个小方格都是边长为1的正方形,在图中添加阴影,使阴影部分既是轴对称图形,又是中心对称图形,且阴影部分的面积是9,请在三个图形各画出一幅图形,所画的三幅图形互不全等.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|