1、设椭圆C的左、右顶点分别为M,N,点G在椭圆C上,若
,
,则椭圆C的离心率为( )
A.
B.
C.
D.
2、已知函数,则
的值为( )
A.2
B.3
C.4
D.5
3、已知函数,则
( )
A.
B.
C.9
D.
4、10张奖券中含有张中奖的奖券,每人购买
张,则前
个购买者中,恰有一人中奖的概率为( )
A. B.
C. D.
5、以模型去拟合一组数据时,为了求出回归方程,设
,其变换后得到线性回归方程
,则c=( )
A.3
B.
C.0.5
D.
6、已知,
,
,若
,则
,
,
的大小关系是( )
A. B.
C. D.
7、已知数列中,
,
,则
的值是( )
A. B.
C.
D.2
8、设函数 (
为自然对数的底数),当
时
恒成立,则实数
的最大值为( )
A.
B.
C.
D.
9、下列说法正确的个数是
①某同学投篮的命中率为0.6,他10次投篮中命中的次数是一个随机变量,且
;
②某福彩中奖概率为,某人一次买了8张,中奖张数
是一个随机变量,且
;
③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数是随机变量,且
A.0个
B.1个
C.2个
D.3个
10、函数的零点是( )
A.
B.和
C.和
D.以上都不是
11、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为
A.81
B.60
C.6
D.11
12、平面直角坐标系中,O为坐标原点,点A,B的坐标分别为(1,1),(-3,3).若动点P满足,其中λ,μ∈R,且λ+μ=1,则点P的轨迹方程为
A.
B.
C.
D.
13、类比平面内“垂直于同条一直线的两条直线互相平行”的性质,可推出空间中有下列结论:
①垂直于同一条直线的两条直线互相平行;
②垂直于同一条直线的两个平面互相平行;
③垂直于同一个平面的两条直线互相平行;
④垂直于同一个平面的两个平面互相平行.
其中正确的是( )
A.①②
B.②③
C.③④
D.①④
14、复数,则
( )
A.
B.
C.
D.
15、若函数有两个极值点,则实数
的取值范围是( )
A.
B.
C.
D.
16、商场经营的某种袋装大米质量(单位:kg)服从正态分布N(10,0.12),任取一袋大米,质量不足9.8kg的概率为________.(精确到0.0001)
注:P(μ-σ<x≤μ+σ)=0.6826,P(μ-2σ<x≤μ+2σ)=0.9544,P(μ-3σ<x≤μ+3σ)=0.9974.
17、某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
(1);
(2);
(3);
(4);
(5).则常数
______.
18、对于自然数方幂和(
,
),
,
,求和方法如下:
23﹣13=3+3+1,
33﹣23=3×22+3×2+1,
……
(n+1)3﹣n 3=3n2+3n+1,
将上面各式左右两边分别,就会有(n+1)3﹣13=+
+n,解得
=
n(n+1)(2n+1),类比以上过程可以求得
,A,B,C,D,E,F
R且与n无关,则A+F的值为_______.
19、已知事件,
互斥,且事件
发生的概率
,事件
发生的概率
,则事件
,
都不发生的概率是___________.
20、已知平面向量,
是非零向量.若
在
上的投影向量的模为1,
,则
的取值范围是______.
21、在三棱锥中,
,
,
,则三棱锥
的外接球的表面积为__________.
22、已知双曲线C:=1(a>0,b>0),P为x轴上一动点,经过P的直线y=2x+m(m≠0)与双曲线C有且只有一个交点,则双曲线C的离心率为________.
23、记(3+x)8=a0+a1(2+x)+a2(2+x)+…+a8(2+x)8,则a1+a2+…+a6+a
的值为____________.(结果以数字作答)
24、设函数是定义在
上的可导函数,其导函数为
,且有
,则不等式
的解集是______.
25、在平面直角坐标系中,点
不与点
重合,称射线
与圆
的交点
为点
的“中心投影点”.曲线
上所有点的“中心投影点”构成的曲线的长度是__________.
26、已知直线l:与拋物线C:
相切.
(1)求拋物线方程;
(2)斜率不为0的直线经过拋物线C的焦点F,交抛物线于两点A,B,拋物线C上是否存在两点D,E关于直线
对称.若存在求出斜率k的取值范围;若不存在,说明理由.
27、近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重. 大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如表所示的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将列联表补充完整;
| 患心肺 疾病 | 不患心 肺疾病 | 合计 |
男 |
| 5 |
|
女 | 10 |
|
|
合计 |
|
| 50 |
(2)是否有97.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求
的分布列以及数学期望.下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式,其中
)
28、的内角
的对边分别为
,已知
.
(1)求;
(2)若,
的面积为
,求
的周长.
29、已知函数的图象上有一点列
,点
在
轴上的射影是
且
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)对任意的正整数,当
时,不等式
恒成立,求实数
的取值范围;
(Ⅲ)设四边形的面积是
,求证:
.
30、用数学归纳法证明1+≤1+
≤
+n(n∈N*).