2025-2026年湖南常德高三下册期末数学试卷(含答案)

一、选择题(共15题,共 75分)

1、函数是定义在上的偶函数,在区间上单调递增.若是锐角三角形的两个内角,则下列不等关系正确的是( )

A.

B.

C.

D.

2、已知分别是双曲线的左、右焦点,抛物线的焦点与双曲线的一个焦点重合,点是两曲线的一个交点,,则双曲线的离心率为( )

A.

B.

C.

D.2

3、设复数满足,则  

A.1 B. C.2 D.4

4、已知函数在区间上的最大值为0,则实数的取值范围为  

A. B. C. D.

5、已知:椭圆的左、右焦点分别为,上、下顶点分别是,点在椭圆上,且,则椭圆的离心率为(       

A.

B.

C.

D.

6、方程的正实数根所在的区间为(       

A.

B.

C.

D.

7、分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为(       

A.

B.

C.

D.

8、经过点且与直线平行的直线方程是

A.

B.

C.

D.

9、函数的定义域是( )

A.(2,3)

B.

C.

D.

10、分别是椭圆的左、右焦点,分别为该椭圆的左右顶点,为椭圆上一点,轴,过点的直线与线段交于点,与轴交于点,直线交于,则该椭圆的离心率为(   )

A. B. C. D.

11、已知函数)满足,且的导函数,则不等式的解集为( )

A.

B.

C.

D.

12、命题 a>b,则a2>b2的否命题;②xy0,则xy互为相反数的逆命题;③x2<4,则-2<x<2”的逆否命题,以上命题中真命题个数是(  

A.1 B.2 C.3 D.0

13、实数xy满足约束条件,则的最大值为(  

A. B.6 C.12 D.20

14、函数的定义城是( )

A. B. C. D.

15、已知,则(       

A.

B.

C.

D.

二、填空题(共10题,共 50分)

16、,则的大小关系为(  

A. B. C. D.

17、函数处的切线方程为____________.

18、若变量满足约束条件,则的最大值为________

19、某程序框图如图所示,若,则该程序运行后,输出的值为______

 

20、将3个1,11个0排成一列,使得每两个1之间至少隔着两个0,则共有__________种不同的排法.

21、已知函数为奇函数,则实数a的值为______.

22、在平面直角坐标系中,设抛物线的焦点为F,准线为lP为抛物线上一点,过点P,交准线l于点A.若.则________

23、设定义域为的偶函数满足,当时,,若关于的方程恰有两个根,则实数的取值范围为__________

24、3名男生和4名女生中选出3人,男女生都有的选法有______.

25、已知双曲线的左右焦点为,过轴的垂线与相交于两点,轴相交于.若,则双曲线的离心率为_________.

三、解答题(共5题,共 25分)

26、如图,点在平面外,△在平面内,分别是线段的中点.

1)求证:四点在同一平面上;

2)若,异面直线所成角为60°,求的长.

27、小平、老金、大魏、小刘、小张和小徐共6人要排成一排拍照.

1)若小张和小徐必须相邻.则共有多少种排队种数?

2)若大魏和小刘不能相邻,则共有多少种排队种数?

3)若小张和小徐必须相邻,大魏和小刘不能相邻,小平和老金不能相邻,则共有多少种排队种数?

28、已知四棱锥的底面为直角梯形,底面的中点.

(1)求异面直线所成角的余弦值;

(2)设是棱上的一点,当平面时,求直线与平面所成角的正弦值.

29、已知直线与抛物线交于两点,点为线段的中点.

(I)当直线经过抛物线的焦点,时,求点的横坐标;

(Ⅱ)若,求点横坐标的最小值,井求此时直线的方程.

30、己知

1)若是真命题,求对应的取值范围;

2)若的必要不充分条件,求的取值范围.

首页
栏目
栏目
栏目
栏目
查看答案
下载试卷