2025-2026学年广西柳州高三(上)期末试卷数学

一、选择题(共15题,共 75分)

1、若双曲线的渐近线与圆相切,则

A.5 B.  

C.2 D.

 

2、在点处的切线方程为(       

A.

B.

C.

D.

3、若存在过点的直线与曲线和曲线都相切,则实数a的值是(       

A.

B.0

C.1

D.2

4、已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  

A. B. C. D.

5、某商品的销售量(件)与销售价格(元/)存在线性相关关系,根据一组样本数据,用最小二乘法建立的回归方程为,则下列结论中正确的是( )

具有线性正相关关系;

②回归直线过样本点的中心

③若销售价格每件增加元,则销售量约增加件;

④当销售价格为元时,销售量在件左右.

A.①②

B.②④

C.①④

D.③④

6、已知,则下列结论一定正确的是(  

A. B. C. D.

7、2021年4月24日是第六个“中国航天日”,今年的主题是“扬帆起航逐梦九天”.为了制作一期展示我国近年来航天成就的展览,某校科普小组的6名同学,计划分“神舟飞天”“嫦娥奔月”“火星探测”3个展区制作展板,每人只负责一个展区,每个展区至少有一人负责,则不同的任务分配方案有(   

A.990种

B.630种

C.540种

D.480种

8、若数列满足,且,则下列说法正确的是(  )

A.

B.

C.

D.

9、一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球表面积为

A.

B.

C.

D.

10、直线与圆相交于两点,若,则的取值范围是(       

A.

B.

C.

D.

11、将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位长度,得到离心率为的双曲线,则( )

A.对任意的  

B.当时,;当时,

C.对任意的

D.当时,;当时,

 

12、从6名学生中选3名分别担任数学物理化学科代表,若甲乙2人至少有一人入选,则不同的方法有(   

A.40种

B.60种

C.96种

D.120种

13、已知直线的倾斜角是,则此直线的斜率是(    

A.

B.

C.

D.

14、已知向量 ,则函数的最小正周期为

A.   B.   C.   D.

 

15、如图所示的平面区域所对应的不等式组是

A. B.

C. D.

 

 

二、填空题(共10题,共 50分)

16、已知数列的首项,且,则____

17、已知函数,直线的图象的相邻两个交点的横坐标分别是,现有如下命题:

该函数在上的值域是

上,当且仅当时函数取最大值;

该函数的最小正周期可以是

的图象可能过原点.

其中的真命题有__________(写出所有真命题的序号)

18、已知等差数列的前n项和为,若,则______

19、已知抛物线的焦点和椭圆的右焦点重合,直线过抛物线的焦点F与抛物线交于PQ两点和椭圆交于AB两点,M为抛物线准线上一动点,满足,则直线AB的方程为________.

20、平面的一条斜线和这个平面所成角θ的取值范围是___________.

21、经过坐标原点且和圆相切的直线的方程是_________.

22、,且点,则点的坐标为___________

23、命题p:x2+2x-3>0,命题q:>1,若 q且p为真,则x的取值范围是_______

24、曲线处的切线方程为__________.

25、ABC中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角度数为为

 

三、解答题(共5题,共 25分)

26、已知圆的圆心为,且经过点.

(1)求圆的标准方程;

(2)已知直线与圆相交于两点,求.

27、某电视台的一个智力游戏节目中,有一道将中国四大名著《三国演义》、《水浒传》、《西游记》、《红楼梦》与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线,每连对一个得2分,连错得-1分,某观众只知道《三国演义》的作者是罗贯中,其他不知道随意连线,将他的得分记作ξ.

(1)求该观众得分ξ为负数的概率;

(2)求ξ的分布列.

28、如图,平面直角坐标系中,射线上分别依次有点,和点,其中..

 

1)用表示及点的坐标;

2)用表示及点的坐标;

3)写出四边形的面积关于的表达式,并求的最大值.

29、已知等差数列项和为,且 .

(1)若 ,求证:数列 是等差数列.

(2)求数列的前项和.

30、为研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如下表所示(单位:人).

 

有效

无效

合计

口服

40

10

50

注射

30

20

50

合计

70

30

100

(1)根据所选择的100个病人的数据,能否有95%的把握认为给药方式和药的效果有关?

(2)现从样本的注射病人中按分层抽样方法取出5人,再从这5人中随机抽取3人,求至少2人有效的概率.

参考公式:,其中

参考数据:

0.15

0.10

0.05

0.025

0.01

2.072

2.706

3.841

5.024

6.635

首页
栏目
栏目
栏目
栏目
查看答案
下载试卷