1、一列沿x轴正方向传播的简谐横波,在t=0时刻的波形图如图所示,波源的振动周期T=1s, P、Q为介质中的两质点。下列说法正确的是( )
A.该简谐波的波速大小为2 m/s
B.t=0时刻,P、Q的速度相同
C.t=0.125s时,P到达波峰位置
D.t=0.5s时, P点在t=0时刻的运动状态传到Q点
2、如图所示,将悬挂在O点的铜球从方形匀强磁场区域左侧一定高度处由静止释放,磁场区域的左右边界处于竖直方向,不考虑空气阻力,则( )
A.铜球在左右两侧摆起的最大高度相同
B.铜球最终将静止在O点正下方
C.铜球运动到最低点时受到的安培力最大
D.铜球向右进入磁场的过程中,受到的安培力方向水平向左
3、如图甲所示,和
为两相干波源,振动方向均垂直于纸面,产生的简谐横波波长均为λ,Р点是两列波相遇区域中的一点,已知Р点到两波源的距离分别为
,
,两列波在Р点干涉相消。若
的振动图象如图乙所示,则
的振动方程可能为( )
A.(cm)
B.(cm)
C.(cm)
D.(cm)
4、我国已成功发射的月球探测车上装有核电池提供动力。核电池是利用放射性同位素衰变放出载能粒子并将其能量转换为电能的装置。某核电池使用的核燃料为,一个静止的
发生一次α衰变生成一个新核,并放出一个γ光子。将该核反应放出的γ光子照射某金属,能放出最大动能为
的光电子。已知电子的质量为m,普朗克常量为h。则下列说法正确的是( )
A.新核的中子数为144
B.新核的比结合能小于核的比结合能
C.光电子的物质波的最大波长为
D.若不考虑γ光子的动量,α粒子的动能与新核的动能之比为117:2
5、工地上甲、乙两人用如图所示的方法将带挂钩的重物抬起。不可伸长的轻绳两端分别固定于刚性直杆上的A、B两点,轻绳长度大于A、B两点间的距离。现将挂钩挂在轻绳上,乙站直后将杆的一端搭在肩上并保持不动,甲蹲下后将杆的另一端搭在肩上,此时物体刚要离开地面,然后甲缓慢站起至站直。已知甲的身高比乙高,不计挂钩与绳之间的摩擦。在甲缓慢站起至站直的过程中,下列说法正确的是( )
A.轻绳的张力大小一直不变
B.轻绳的张力先变大后变小
C.轻绳的张力先变小后变大
D.轻绳对挂钩的作用力先变大后变小
6、如图所示,一细束由黄、蓝、紫三种色光组成的复色光通过三棱镜折射后分为a、b、c三种单色光,∠A大于c光在棱镜中的临界角而小于b光在棱镜中的临界角,下列说法中正确的是( )
A.a种色光为紫光
B.在三棱镜中a光的传播速度最大
C.在相同实验条件下用a、b、c三种色光做双缝干涉实验,c光相邻亮条纹间距一定最大
D.若复色光绕着入射点O顺时针转动至与AB面垂直时,屏上最终只有a光
7、如图所示,P、M、N为三个透明平板,M与P的夹角略小于N与P的夹角
,一束平行光垂直P的上表面入射,下列干涉条纹的图像可能正确的是( )
A.
B.
C.
D.
8、类比是一种常用的研究方法.如图所示,O为椭圆ABCD的左焦点,在O点固定一个正电荷,某一电子P正好沿椭圆ABCD运动,A、C为长轴端点,B、D为短轴端点,这种运动与太阳系内行星的运动规律类似.下列说法中正确的是( )
A.电子在A点的线速度小于在C点的线速度
B.电子在A点的加速度小于在C点的加速度
C.电子由A运动到C的过程中电场力做正功,电势能减小
D.电子由A运动到C的过程中电场力做负功,电势能增加
9、2020年3月20日,电影《放射性物质》在伦敦首映,该片的主角—居里夫人是放射性元素钋()的发现者。已知钋(
)发生衰变时,会产生
粒子和原子核
,并放出
射线。下列分析正确的是( )
A.原子核的质子数为82,中子数为206
B.射线具有很强的穿透能力,可用来消除有害静电
C.由粒子所组成的射线具有很强的电离能力
D.地磁场能使射线发生偏转
10、关于下列四幅图的说法正确的是( )
A.甲图为氢原子的电子云示意图,由图可知电子在核外运动有确定的轨道
B.乙图为原子核的比结合能示意图,由图可知原子核中的平均核子质量比
的要大
C.丙图为链式反应示意图,氢弹爆炸属于该种核反应
D.丁图为氡的衰变图像,由图可知1g氡经过3.8天后还剩0.25g
11、质量为m的小明坐在秋千上摆动到最高点时的照片如图所示,对该时刻,下列说法正确的是( )
A.秋千对小明的作用力小于
B.秋千对小明的作用力大于
C.小明的速度为零,所受合力为零
D.小明的加速度为零,所受合力为零
12、在距离不太远的情况下,亲子电动车(如图)是很多家长接送小学生的选择,亲子电动车一般限制时速不能超过25公里/小时,图为某电动车起步时的速度随时间变化的图像,下列说法正确的是( )
A.0~5s内电动车的位移为15m
B.t=5s时电动车的加速度为1.2m/s2
C.0~5s内电动车的平均速度大于3m/s
D.在起步过程中电动车的功率是一定的
13、如图所示,用一束太阳光去照射横截面为三角形的玻璃砖,在光屏上能观察到一条彩色光带。下列说法正确的是( )
A.玻璃对b光的折射率大
B.c光子比b光子的能量大
C.此现象是因为光在玻璃砖中发生全反射形成的
D.减小a光的入射角度,各种色光会在光屏上依次消失,最先消失的是b光
14、如图为某燃气灶点火装置的原理图。转换器将直流电压转换为正弦交流电压,并加在一理想变压器的原线圈上,理想变压器的原、副线圈的匝数比为n1:n2=1:1000,电压表为交流电表。当变压器副线圈两端电压的瞬时值大于7070V时,就会在钢针和金属板间引发电火花进而点燃气体。此时,电压表的示数至少为( )
A.5
B.5000
C.10
D.7070
15、如图所示的正四棱锥,底面为正方形
,其中
,a、b两点分别固定两个等量的异种点电荷,现将一带电荷量为
的正试探电荷从O点移到c点,此过程中电场力做功为
。选无穷远处的电势为零。则下列说法正确的是( )
A.a点固定的是负电荷
B.O点的电场强度方向平行于
C.c点的电势为
D.将电子由O点移动到d,电势能增加
16、如图所示,某工厂生产的卷纸缠绕在中心轴上,卷纸的直径为d,轴及卷纸的总质量为m。用细绳分别系在轴上的P、Q点,将卷纸通过细绳挂在光滑竖直墙壁上的O点,已知,重力加速度的大小为g。则下列说法正确的是( )
A.每根绳的拉力大小
B.每根绳的拉力大小
C.卷纸对墙的压力大小
D.卷纸对墙的压力大小
17、如图所示,竖直平面内半径的圆弧AO与半径
的圆弧BO在最低点C相切。两段光滑的直轨道的一端在O点平滑连接,另一端分别在两圆弧上且等高。一个小球从左侧直轨道的最高点A由静止开始沿直轨道下滑,经过O点后沿右侧直轨道上滑至最高点B,不考虑小球在O点的机械能损失,重力加速度g取10m/s。则在此过程中小球运动的时间为( )
A.1.5 s
B.2.0 s
C.3.0 s
D.3.5 s
18、如图甲所示,某汽车大灯距水平地面的高度为81cm,该大灯结构的简化图如图乙所示。现有一束光从焦点处射出,经旋转抛物面反射后,垂直半球透镜的竖直直径AB从C点射入透镜。已知透镜直径远小于大灯离地面高度,,半球透镜的折射率为
,tan15°≈0.27,则这束光照射到地面的位置与大灯间的水平距离为( )
A.3m
B.15m
C.30m
D.45m
19、如图所示,用控制变量法可以研究影响平行板电容器电容的因素。设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ。实验中,极板所带电荷量不变,若( )
A.保持S不变,减小d,则θ变大
B.保持S不变,增大d,则θ变小
C.保持d不变,减小S,则θ变小
D.保持d不变,减小S,则θ变大
20、OMN为玻璃等腰三棱镜的横截面,ON=OM,a、b两束可见单色光(关于OO′)对称,从空气垂直射入棱镜底面 MN,在棱镜侧面 OM、ON上反射和折射的情况如图所示,则下列说法正确的是( )
A.在棱镜中a光束的折射率大于b光束的折射率
B.在棱镜中,a光束的传播速度小于b光束的传播速度
C.a、b 两束光用同样的装置分别做单缝衍射实验,a光束比b光束的中央亮条纹宽
D.a、b两束光用同样的装置分别做双缝干涉实验,a光束比b光束的条纹间距小
21、如图所示,原点O沿y方向做了一次全振动后停止在平衡位置。形成了一个向右传播的横波。设在时刻的波形如图所示,
时M点开始振动,开始振动时的方向为___________,则在
时M点离其平衡位置的位移为___________m。
22、今年 3 月某日上海最高气温为 15℃,最低气温为 6℃,则最高气温相当于_____________K;密封气体的矿泉水瓶(瓶内无水)静置于桌面,如图所示,若这一日瓶内气体压强的最大值为 P, 气体压强的最小值则为______________。
23、地球静止同步卫星A和轨道平面与赤道面重合做匀速圆周运动的卫星B的轨道半径之比为4:1,两卫星的公转方向相同。则A、B两颗卫星运行周期之比为________;卫星B每隔________小时经过卫星A正下方。
24、下列说法正确的是__________(填正确答案标号,选对1个得2分,选对2个得4分, 选对3个得5分;每选错1个扣3分,最低得分为0分)
A.悬浮在水中的花粉颗粒的布朗运动是永不停息的
B一定质量气体温度升高,所有气体分子的运动速率都增大
C彩色液晶显示器利用到液晶的光学性质具有各向异性的待点
D.根据能量守恒定律可知所有能量形式间的转化过程都是可逆的
E.钢针能够浮在水面上,是水分子表面张力作用的结果
25、水下有一向各个方向发光的点光源S,当点光源S下沉时,水面被照亮的面积_________ (选填“变大”“变小”或“不变”),若点光源S到水面的距离为h时,水面上发光区域的半径为r,则水的折射率n=______(用h和r表示)。
26、图甲为一条均匀绳子两端产生的两列简谐横波P、Q在t=2 s时刻的波形图,图乙为横坐标是-5.5 m处的质点M的振动图像,则横波Q的波速为____m/s,周期为_____ s,当t=s时质点O的位移为_____cm。
27、某磁敏电阻在室温下的阻值随磁感应强度变化的特性曲线如图甲所示,其中RB表示有磁场时磁敏电阻的阻值,R0表示无磁场时磁敏电阻的阻值。某实验小组利用该磁敏电阻测量待测磁场的磁感应强度(不考虑磁场对测量电路其他部分的影响),提供的其它实验器材有:
A.电流表 (0~2 mA,内阻约为30 Ω)
B.电压表 (0~3 V,内阻约为5 kΩ)
C.滑动变阻器R1(0~10 Ω,额定电流50 mA)
D.滑动变阻器R2(0~10 Ω,额定电流500 mA)
E.干电池2节
F.开关、导线若干
(1)根据图甲可知,只有在0~0.6 T范围内,磁敏电阻的阻值随磁感应强度的变化才是不均匀变化的,则在0.6~1.4 T范围内,磁敏电阻的阻值随磁感应强度的变化关系表达式为______。
(2)实验应选用的滑动变阻器为______(选填“R1”或“R2”)。
(3)将该磁敏电阻置入待测磁场中,实物电路图如图乙所示。请用笔画线代替导线,在图乙中添加连线______,闭合开关后,电路能测得如下表所示的数据:
0.00 | 0.45 | 0.91 | 1.50 | 1.79 | 2.71 | |
0.00 | 0.30 | 0.60 | 1.00 | 1.20 | 1.80 |
(4)根据上表中的数据,可得磁敏电阻的测量值RB=______Ω。
(5) 已知无磁场时磁敏电阻阻值R0=200 Ω,则待测磁场的磁感应强度B=______T。(结果保留两位有效数字)
28、如图所示,以两竖直虚线、
为边界且
与
的距离为d,
的上方存在垂直纸面向里的匀强磁场,磁感应强度为B;
的下方存在垂直纸面向外的匀强磁场,磁感应强度为
。
上的
点处有一粒子源,每秒斜右上发射与
成30°角的质量为m、电荷量
的粒子N个,各粒子以不同的速率发射,且个数按速率均匀分布。
是一块挡板,
与
的距离为L,粒子打到上面即被吸收,不考虑粒子的重力和粒子间的相互作用。
(1)若在与
之间存在水平向左的匀强电场,且此时某粒子以速率v(v未知)射入,恰好未打到
上,电场强度与速率的关系为
,求速率v;
(2)把第(1)小题中若MN上方的磁场足够大,使得粒子不会打到CD挡板上,匀强电场的方向改成水平向右,大小不变,以初速度射入,粒子第一次回到边界PQ时与
的距离;
(3)把第(1)小题中匀强电场的方向改成水平向右,大小为不变,上放一个收集板
,
,
足够长,求打到收集板上下面的粒子数之比。
29、一圆柱形气缸水平固定,开口向右,底部导热,其它部分绝热,横截面积为S。气缸内的两绝热隔板a、b将气缸分成I、Ⅱ两室,隔板可在气缸内无摩擦地移动。b的右侧与水平弹簧相连,初始时弹簧处于拉伸状态,两室内均封闭有体积为、温度为
的理想气体。现用电热丝对Ⅱ室缓慢加热,稳定后b隔板向右移动了
。已知大气压强为
,环境温度为
,加热前、后弹簧的弹力大小均为
。
(1)a隔板向左移动的距离;
(2)加热后Ⅱ室内气体的温度T。
30、如图所示,质量为M的木块A静置于水平面上,距A右侧d处有固定挡板B,一质量为m的小物体C,以水平速度v0与A相碰,碰后C、A粘连在一起运动,CA整体与B碰撞没有能量损失,且恰好能回到C、A碰撞时的位置所有碰撞时间均不计,重力加速度为g。求:
(1)C与A碰撞前后,C损失的机械能;
(2)木块A与水平面间动摩擦因数μ。
31、如图所示,左右两个竖直气缸的内壁光滑,高度均为H,横截面积分别为2S、S,下部有体积忽略不计的细管连接,左气缸上端封闭,右气缸上端与大气连通且带有两个卡槽。两个活塞M、N的质量和厚度不计,左气缸和活塞M绝热,右气缸导热性能良好。活塞M上方、两活塞M、N下方分别密封一定质量的理想气体A、B。当A、B的温度均为-3℃时,M、N均恰好静止于气缸的正中央。外界大气压强为p0,环境温度恒为-3℃。在开始通过电阻丝对A缓慢加热,忽略电阻丝的体积。
(1)当活塞N恰好上升至右气缸顶端时,求气体A的热力学温度;
(2)当活塞M恰好下降至左气缸底端时,求气体A的热力学温度。
32、1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中运动特点,解决了粒子的加速问题。现在回旋加速器被广泛应用于科学研究和恢学设备中。回旋加速器的工作原理如图甲所,置于真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直,加速器按一定频率的高频交流电源,保证粒子每次经过电场都被加速,加速电压为U。D形金属盒中心粒子源产生的粒子,初速度不计,在加速器中被加速,加速过程中不考虑相对论效应和重力作用。
(1)求把质量为m、电荷量为q的静止粒子加速到最大动能所需时间;
(2)若此回旋加速器原来加速质量为2m,带电荷量为q的α粒子(),获得的最大动能为Ekm,现改为加速氘核(
),它获得的最大动能为多少?要想使氘核获得与α粒子相同的动能,请你通过分析,提出一种简单可行的办法;
(3)已知两D形盒间的交变电压如图乙所示,设α粒子在此回旋加速器中运行的周期为T,若存在一种带电荷量为q′、质量为m′的粒子,在
时进入加速电场,该粒子在加速器中能获得的最大动能?(在此过程中,粒子未飞出D形盒)